上海视觉

上海视觉 ›› 2025, Vol. 0 ›› Issue (3): 19-25.

• 数智赋能 • 上一篇    下一篇

生成式人工智能赋能民间传说视觉转化的逻辑与路径研究

姜晓微   

  1. 长春大学,长春 130022
  • 出版日期:2025-09-20 发布日期:2025-09-03
  • 作者简介:姜晓微(1980— ),女,吉林大学硕士,长春大学美术学院教授,长春大学非物质文化遗产视觉转化研究中心主任。研究方向为非遗视觉转化。
  • 基金资助:
    国家社科基金艺术学一般项目“文化传承与创新视阈下的民间传说视觉转化与开发路径研究”(编号19BH148);与吉林省教育厅社会科学研究重点项目“美丽乡村建设下吉林省民间传说的景观化传承与发展研究”(编号JJKH20240763SK)

Logic and Pathway of AIGC-based Visual Transformation of Folklore

JIANG Xiaowei   

  • Online:2025-09-20 Published:2025-09-03

摘要:

在完成“讲好中国故事”这一时代命题的驱动下和视觉文化蓬勃发展的语境下,如何借助生成式人工智能技术实现民间传说的视觉转化已成为重要课题。虽然生成式人工智能对民间传说存在一定的知识盲区、价值偏向、内容编造等负面效应,但积极的效应大于负面的效应。在生成式人工智能的助力下,可以以人机共智助推民间传说传承创新,以文化流动和文化普及推进民间传说传播,以人机共创促成民间传说文化体系的建立,以文化共生促进文化互通互鉴。

关键词: 视觉转化, 民间传说, 生成式人工智能, 传承创新, 文化流动

Abstract:

Driven by the imperative to effectively communicate Chinese stories and the flourishing context of visual culture, the transformation of folklore through AI Generated Content (AIGC) vision has emerged as a significant area of inquiry. While AIGC presents challenges to folklore—including knowledge blindness, value bias, and content fabrication—its positive contributions ultimately outweigh these drawbacks. Through AIGC implementation,we can advance folklore inheritance and innovation via human-machine shared intelligence, enhance folklore dissemination through cultural flow and popularization strategies, foster the development of systematic folklore cultural frameworks through human-machine co-creation, and promote cultural interoperability and mutual learning through cultural symbiosis. This approach offers new pathways for revitalizing traditional folklore in contemporary visual contexts.

Key words: Visual Transformation, Folklore, AI Generated Content (AIGC), Inheritance and Innovation, Cultural Flow